This investigation focuses on the constant amplitude (CA) multiaxial fatigue limit of components made of metallic materials weakened by defects, cracks, and sharp U- and/or V-notches. To estimate the multiaxial fatigue thresholds of plain, sharply notched, and cracked materials and defects, a novel theoretical framework based on the well-known averaged strain energy density (SED) criterion is proposed, which extends the Atzori-Lazzarin-Meneghetti (ALM) diagram to multiaxial loading. The proposed design equations are validated against 128 experimental multiaxial fatigue limits, taken from the literature.

Notch and Fracture Mechanics-Based Assessment of Multiaxial Fatigue Thresholds of Defects and Sharp Notches in Metallic Materials

Rigon D.;Meneghetti G.
2025

Abstract

This investigation focuses on the constant amplitude (CA) multiaxial fatigue limit of components made of metallic materials weakened by defects, cracks, and sharp U- and/or V-notches. To estimate the multiaxial fatigue thresholds of plain, sharply notched, and cracked materials and defects, a novel theoretical framework based on the well-known averaged strain energy density (SED) criterion is proposed, which extends the Atzori-Lazzarin-Meneghetti (ALM) diagram to multiaxial loading. The proposed design equations are validated against 128 experimental multiaxial fatigue limits, taken from the literature.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3545821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact