In landfill cover, geosynthetic packages are often used to fulfil different and simultaneous functions: drainage, waterproofing, separation, reinforcement, and soil protection. In this regard, various types of geosynthetics are combined in succession to allow for water and biogas drainage and to waterproof, reinforce, and provide protection from erosion over the useful lifetime, ranging over many decades if we consider the long phases of disposal, closure, and quiescence of the landfill itself. The creation of the composite cover barrier requires the evaluation of various interfaces' frictional strength under low contact stresses, both in static and seismic cases. The main purpose of this study is to summarize the results of past laboratory tests carried out on different geosynthetic-geosynthetic and geosynthetic-soil-geosynthetic interfaces using experimental instrumentation developed at the geotechnical laboratory of the University of Padua, which allows for the characterization of the interface geosynthetic friction at low contact stresses. The main aspects highlighted are the kinematic mode of failure, the wearing of the contact surfaces, the presence or absence of interstitial fluid, and, finally, the density level of the granular soil in contact with the geosynthetics.

Laboratory Evaluation of Geosynthetic Interface Friction under Low Stress

Carrubba P.
Conceptualization
2024

Abstract

In landfill cover, geosynthetic packages are often used to fulfil different and simultaneous functions: drainage, waterproofing, separation, reinforcement, and soil protection. In this regard, various types of geosynthetics are combined in succession to allow for water and biogas drainage and to waterproof, reinforce, and provide protection from erosion over the useful lifetime, ranging over many decades if we consider the long phases of disposal, closure, and quiescence of the landfill itself. The creation of the composite cover barrier requires the evaluation of various interfaces' frictional strength under low contact stresses, both in static and seismic cases. The main purpose of this study is to summarize the results of past laboratory tests carried out on different geosynthetic-geosynthetic and geosynthetic-soil-geosynthetic interfaces using experimental instrumentation developed at the geotechnical laboratory of the University of Padua, which allows for the characterization of the interface geosynthetic friction at low contact stresses. The main aspects highlighted are the kinematic mode of failure, the wearing of the contact surfaces, the presence or absence of interstitial fluid, and, finally, the density level of the granular soil in contact with the geosynthetics.
2024
File in questo prodotto:
File Dimensione Formato  
polymers-16-02519-with-cover.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3545715
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact