The effects of microalloying with Mg (0–0.23 wt%) on the microstructural evolution and mechanical properties of Al–Cu 224 cast alloys at ambient and elevated temperatures are investigated using transmission electron microscopy, differential scanning calorimetry, and tensile/compression testing. The results show that microalloying with Mg significantly enhances the precipitation of the θ′ phase during aging, producing fine, dense, and uniformly distributed θ′ precipitates. These precipitates are much more effective for alloy strengthening than are the θ″ precipitates in the alloy without Mg. During stabilization at 300 °C for 100 h, the dominant process becomes coarsening of the θ′ phase. The Mg-containing alloys have much finer and denser θ′ precipitates and thus considerably higher yield strengths at elevated temperature as compared to those of the alloy without Mg. The improvement is more pronounced at low Mg contents (0.09%–0.13%) than at high contents. The yield strength at 300 °C of the 0.13% Mg alloy is as high as 140 MPa, which is far superior to that of most cast aluminum alloys. Moreover, the enhanced yield strength of this alloy is well preserved during prolonged exposure at 300 °C for 1000 h, indicating that it is a promising lightweight material for high-temperature applications.

Enhanced mechanical properties of high-temperature-resistant Al–Cu cast alloy by microalloying with Mg

Rakhmonov, Jovid;
2020

Abstract

The effects of microalloying with Mg (0–0.23 wt%) on the microstructural evolution and mechanical properties of Al–Cu 224 cast alloys at ambient and elevated temperatures are investigated using transmission electron microscopy, differential scanning calorimetry, and tensile/compression testing. The results show that microalloying with Mg significantly enhances the precipitation of the θ′ phase during aging, producing fine, dense, and uniformly distributed θ′ precipitates. These precipitates are much more effective for alloy strengthening than are the θ″ precipitates in the alloy without Mg. During stabilization at 300 °C for 100 h, the dominant process becomes coarsening of the θ′ phase. The Mg-containing alloys have much finer and denser θ′ precipitates and thus considerably higher yield strengths at elevated temperature as compared to those of the alloy without Mg. The improvement is more pronounced at low Mg contents (0.09%–0.13%) than at high contents. The yield strength at 300 °C of the 0.13% Mg alloy is as high as 140 MPa, which is far superior to that of most cast aluminum alloys. Moreover, the enhanced yield strength of this alloy is well preserved during prolonged exposure at 300 °C for 1000 h, indicating that it is a promising lightweight material for high-temperature applications.
File in questo prodotto:
File Dimensione Formato  
Enhancedmechanicalproperties.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Altro
Dimensione 7.48 MB
Formato Adobe PDF
7.48 MB Adobe PDF Visualizza/Apri
1-s2.0-S092583882030668X-main.pdf

Accesso riservato

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3545315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 72
  • OpenAlex ND
social impact