Co-extrusion of multi-materials structures shows technological challenges and opportunities. Filaments made of a metallic core and a ceramic shell are one example of how structural and functional features can be combined in a single component to provide a synergic effect. In this work, we focused on the fabrication of shell and core-shell scaffolds for potential applications as bone substitutes. Stainless steel 316L was selected for the core material, whilst in situ synthesized sphene (CaTiSiO5) bioactive ceramic was selected as a shell. The combination of a ductile core and a bioactive ceramic, so as scaffolds made of empty struts may represent a new generation of bone substitutes with mechanical properties closer to the ones of natural bone so as with improved bioactivity. Therefore, formulated inks were co-extruded in one step using a customized printing set-up. Microstructural and mechanical properties were investigated on shell and core-shell filaments and 3D structures. Shell bio...
Co-extrusion of highly loaded feedstocks for fabrication of stainless steel-bioceramic core-shell structures
Lisa Biasetto
2024
Abstract
Co-extrusion of multi-materials structures shows technological challenges and opportunities. Filaments made of a metallic core and a ceramic shell are one example of how structural and functional features can be combined in a single component to provide a synergic effect. In this work, we focused on the fabrication of shell and core-shell scaffolds for potential applications as bone substitutes. Stainless steel 316L was selected for the core material, whilst in situ synthesized sphene (CaTiSiO5) bioactive ceramic was selected as a shell. The combination of a ductile core and a bioactive ceramic, so as scaffolds made of empty struts may represent a new generation of bone substitutes with mechanical properties closer to the ones of natural bone so as with improved bioactivity. Therefore, formulated inks were co-extruded in one step using a customized printing set-up. Microstructural and mechanical properties were investigated on shell and core-shell filaments and 3D structures. Shell bio...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2238785424025250-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
12.73 MB
Formato
Adobe PDF
|
12.73 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.