We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of coequalizers in Cat that identify pairs of objects: they are faithful and reflect isomorphisms.
Groupoids and skeletal categories form a pretorsion theory in Cat
Campanini, Federico;
2023
Abstract
We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of coequalizers in Cat that identify pairs of objects: they are faithful and reflect isomorphisms.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
2207.08487v2.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
194 kB
Formato
Adobe PDF
|
194 kB | Adobe PDF | Visualizza/Apri |
|
1-s2.0-S0001870823002530-main.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
354.69 kB
Formato
Adobe PDF
|
354.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




