We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of coequalizers in Cat that identify pairs of objects: they are faithful and reflect isomorphisms.

Groupoids and skeletal categories form a pretorsion theory in Cat

Campanini, Federico;
2023

Abstract

We describe a pretorsion theory in the category Cat of small categories: the torsion objects are the groupoids, while the torsion-free objects are the skeletal categories, i.e., those categories in which every isomorphism is an automorphism. We infer these results from two unexpected properties of coequalizers in Cat that identify pairs of objects: they are faithful and reflect isomorphisms.
File in questo prodotto:
File Dimensione Formato  
2207.08487v2.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 194 kB
Formato Adobe PDF
194 kB Adobe PDF Visualizza/Apri
1-s2.0-S0001870823002530-main.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 354.69 kB
Formato Adobe PDF
354.69 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3544979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact