In this work, waste fiberglass was up-cycled, alone, or mixed with used alumina-zirconia-silica (AZS) refractory from dismantled glass melting furnaces. Alkali activation was performed by suspending fiberglass and fiberglass/AZS powders in NaOH aqueous solution of various concentrations (8M, 6M, and 3M). The activation of waste fiberglass with 8M NaOH yields a gel with calcium and sodium-containing aluminosilicate hydrates. The addition of AZS refractory enabled the release of aluminates into the solution, which had beneficial effects on the mechanical properties. Low molarity activation yielded weaker materials which could be used as precursors for firing at moderate temperatures (800 °C and 1000 °C) to create cellular glass-ceramics, with a total porosity of up to 92 %. The firing of 8M activated samples resulted in glass ceramics with a 66–75 % porosity range and compressive strength of 10–23Mpa. The compressive strength-to-density ratio before and after firing was comparable to that of established commercial construction materials.

Sustainable construction materials from alkali-activated waste fiberglass and waste refractory

Elsayed H.;Bernardo E.
2024

Abstract

In this work, waste fiberglass was up-cycled, alone, or mixed with used alumina-zirconia-silica (AZS) refractory from dismantled glass melting furnaces. Alkali activation was performed by suspending fiberglass and fiberglass/AZS powders in NaOH aqueous solution of various concentrations (8M, 6M, and 3M). The activation of waste fiberglass with 8M NaOH yields a gel with calcium and sodium-containing aluminosilicate hydrates. The addition of AZS refractory enabled the release of aluminates into the solution, which had beneficial effects on the mechanical properties. Low molarity activation yielded weaker materials which could be used as precursors for firing at moderate temperatures (800 °C and 1000 °C) to create cellular glass-ceramics, with a total porosity of up to 92 %. The firing of 8M activated samples resulted in glass ceramics with a 66–75 % porosity range and compressive strength of 10–23Mpa. The compressive strength-to-density ratio before and after firing was comparable to that of established commercial construction materials.
2024
File in questo prodotto:
File Dimensione Formato  
2024_Ourgessa fiberglass.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 8.24 MB
Formato Adobe PDF
8.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3543664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact