PANGAEA (Planetary ANalogue Geological and Astrobiological Exercise for Astronauts) is a field training course designed by the European Space Agency (ESA) that, since 2016, has imparted to ESA and NASA astronauts, and Roscosmos cosmonauts the basic theoretical and practical knowledge of geology and astrobiology and trained them in the field. Hence developing independent field skills, including working with a remotely located science team, is a key part of the training. For this reason, classroom and field lessons are tightly interwoven so that the concepts introduced in the classroom are shown in the field soon afterwards. The primary field sites selected for the course are the Permo-Triassic sedimentary sequences in the Italian Dolomites, analogue to the Martian alluvial plains ones, the impact geological environment of the Ries Crater, Germany, a comprehensive suite of volcanic emplacements and deposits in Lanzarote, Spain, and the anorthosite outcrops, analogue to lunar highlands rocks, in Lofoten, Norway. Each site is used as a base to deliver the main learning sessions, respectively: 1) Earth geology, rock recognition and sedimentology on Earth and Mars, 2) Lunar geology and impact cratering, 3) volcanism on Earth, Moon, and Mars, and astrobiology 4) intrusive rocks and lunar primordial crustal evolution. The four sessions are designed to increase the trainees’ autonomy in the field up to autonomously executed geological traverses including sampling activities. Whilst PANGAEA’s primary focus is astronaut training, where appropriate, technologies being developed for future missions are used to evaluate their performances in analogue field environments and to train the astronauts in using technologies that might support future missions.

The ESA PANGAEA programme: training astronauts in field science

Massironi M.
Writing – Original Draft Preparation
;
Sauro F.;Pozzobon R.;
2023

Abstract

PANGAEA (Planetary ANalogue Geological and Astrobiological Exercise for Astronauts) is a field training course designed by the European Space Agency (ESA) that, since 2016, has imparted to ESA and NASA astronauts, and Roscosmos cosmonauts the basic theoretical and practical knowledge of geology and astrobiology and trained them in the field. Hence developing independent field skills, including working with a remotely located science team, is a key part of the training. For this reason, classroom and field lessons are tightly interwoven so that the concepts introduced in the classroom are shown in the field soon afterwards. The primary field sites selected for the course are the Permo-Triassic sedimentary sequences in the Italian Dolomites, analogue to the Martian alluvial plains ones, the impact geological environment of the Ries Crater, Germany, a comprehensive suite of volcanic emplacements and deposits in Lanzarote, Spain, and the anorthosite outcrops, analogue to lunar highlands rocks, in Lofoten, Norway. Each site is used as a base to deliver the main learning sessions, respectively: 1) Earth geology, rock recognition and sedimentology on Earth and Mars, 2) Lunar geology and impact cratering, 3) volcanism on Earth, Moon, and Mars, and astrobiology 4) intrusive rocks and lunar primordial crustal evolution. The four sessions are designed to increase the trainees’ autonomy in the field up to autonomously executed geological traverses including sampling activities. Whilst PANGAEA’s primary focus is astronaut training, where appropriate, technologies being developed for future missions are used to evaluate their performances in analogue field environments and to train the astronauts in using technologies that might support future missions.
2023
Aeronautics and Astronautics - AIDAA XXVII International Congress
Aeronautics and Astronautics - AIDAA XXVII International Congress
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3543239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact