Most investigations on flow batteries (FBs) make the assumption of perfectly mixed electrolytes inside the tanks without estimating their likelihood, while specific analyses are missing in the literature. This paper presents a pioneering investigation of the electrolyte flow dynamics inside FB tanks. This study considers the Open Circuit Voltage (OCV) measured at the stack of a 9 kW/27 kWh Vanadium FB with 500 L tanks. Order-of-magnitude estimates of the measured dynamics suggest that differences in densities and viscosities of the active species drive gradients of concentrations with different patterns in the positive and negative tanks and in charge and discharge, affected by current and flow rate, which result in significant deviation from homogeneity, affecting the State of Charge (SoC) of the electrolytes flowed into the stack and thus the FB performance. In particular, stratifications of the inlet electrolytes may appear which are responsible for delays in reaching the outlets, with initial plateau and following step (s) in the SoC at the stack. These events can have a major impact in the performance of industrial FBs with large tanks and suggest that specific tank designs may improve the overall dynamics, calling for further analysis.

Early Investigations on Electrolyte Mixing Issues in Large Flow Battery Tanks

Trovo', Andrea
Formal Analysis
;
Picano, Francesco
Conceptualization
;
Guarnieri, Massimo
Conceptualization
2024

Abstract

Most investigations on flow batteries (FBs) make the assumption of perfectly mixed electrolytes inside the tanks without estimating their likelihood, while specific analyses are missing in the literature. This paper presents a pioneering investigation of the electrolyte flow dynamics inside FB tanks. This study considers the Open Circuit Voltage (OCV) measured at the stack of a 9 kW/27 kWh Vanadium FB with 500 L tanks. Order-of-magnitude estimates of the measured dynamics suggest that differences in densities and viscosities of the active species drive gradients of concentrations with different patterns in the positive and negative tanks and in charge and discharge, affected by current and flow rate, which result in significant deviation from homogeneity, affecting the State of Charge (SoC) of the electrolytes flowed into the stack and thus the FB performance. In particular, stratifications of the inlet electrolytes may appear which are responsible for delays in reaching the outlets, with initial plateau and following step (s) in the SoC at the stack. These events can have a major impact in the performance of industrial FBs with large tanks and suggest that specific tank designs may improve the overall dynamics, calling for further analysis.
2024
File in questo prodotto:
File Dimensione Formato  
batteries-10-00133.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.95 MB
Formato Adobe PDF
1.95 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact