Retrieval Augmented Generation (RAG) is emerging as a flexible and robust technique to adapt models to private users data without training, to handle credit attribution, and to allow efficient machine unlearning at scale. However, RAG techniques for image generation may lead to parts of the retrieved samples being copied in the model's output. To reduce risks of leaking private information contained in the retrieved set, we introduce Copy-Protected generation with Retrieval (CPR), a new method for RAG with strong copyright protection guarantees in a mixed-private setting for diffusion models. CPR allows to condition the output of diffusion models on a set of retrieved images, while also guaranteeing that unique identifiable information about those example is not exposed in the generated outputs. In particular, it does so by sampling from a mixture of public (safe) distribution and private (user) distribution by merging their diffusion scores at inference. We prove that CPR satisfies Near Access Freeness (NAF) which bounds the amount of information an attacker may be able to extract from the generated images. We provide two algorithms for copyright protection, CPR-KL and CPR-Choose. Unlike previously proposed rejection-sampling-based NAF methods, our methods enable efficient copyright-protected sampling with a single run of backward diffusion. We show that our method can be applied to any pre-trained conditional diffusion model, such as Stable Diffusion or unCLIP. In particular, we empirically show that applying CPR on top of unCLIP improves quality and text-to-image alignment of the generated results (81.4 to 83.17 on TIFA benchmark), while enabling credit attribution, copy-right protection, and deterministic, constant time, unlearning.

CPR: Retrieval Augmented Generation for Copyright Protection

Zancato, Luca;
2024

Abstract

Retrieval Augmented Generation (RAG) is emerging as a flexible and robust technique to adapt models to private users data without training, to handle credit attribution, and to allow efficient machine unlearning at scale. However, RAG techniques for image generation may lead to parts of the retrieved samples being copied in the model's output. To reduce risks of leaking private information contained in the retrieved set, we introduce Copy-Protected generation with Retrieval (CPR), a new method for RAG with strong copyright protection guarantees in a mixed-private setting for diffusion models. CPR allows to condition the output of diffusion models on a set of retrieved images, while also guaranteeing that unique identifiable information about those example is not exposed in the generated outputs. In particular, it does so by sampling from a mixture of public (safe) distribution and private (user) distribution by merging their diffusion scores at inference. We prove that CPR satisfies Near Access Freeness (NAF) which bounds the amount of information an attacker may be able to extract from the generated images. We provide two algorithms for copyright protection, CPR-KL and CPR-Choose. Unlike previously proposed rejection-sampling-based NAF methods, our methods enable efficient copyright-protected sampling with a single run of backward diffusion. We show that our method can be applied to any pre-trained conditional diffusion model, such as Stable Diffusion or unCLIP. In particular, we empirically show that applying CPR on top of unCLIP improves quality and text-to-image alignment of the generated results (81.4 to 83.17 on TIFA benchmark), while enabling credit attribution, copy-right protection, and deterministic, constant time, unlearning.
2024
IEEE Conference on Computer Vision and Pattern Recognition
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
9798350353006
File in questo prodotto:
File Dimensione Formato  
zancato.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri   Richiedi una copia
2403.18920v1.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 34.88 MB
Formato Adobe PDF
34.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact