ω Centauri, the most massive globular cluster in the Milky Way, has long been suspected to be the stripped nucleus of a dwarf galaxy that fell into the Galaxy a long time ago. There is considerable evidence for this scenario including a large spread in metallicity and an unusually large number of distinct subpopulations seen in photometric studies. In this work, we use new Multi-Unit Spectroscopic Explorer spectroscopic and Hubble Space Telescope photometric catalogs to investigate the underlying metallicity distributions as well as the spatial variations of the populations within the cluster up to its half-light radius. Based on 11,050 member stars, the [M/H] distribution has a median of (−1.614 ± 0.003) dex and a large spread of ∼1.37 dex, reaching from −0.67 to −2.04 dex for 99.7% of the stars. In addition, we show the chromosome map of the cluster, which separates the red giant branch stars into different subpopulations, and analyze the subpopulations of the most metal-poor component. Finally, we do not find any metallicity gradient within the half-light radius, and the different subpopulations are well mixed.

oMEGACat. III. Multiband Photometry and Metallicities Reveal Spatially Well-mixed Populations within ω Centauri’s Half-light Radius

Milone, Antonino P.;Bellini, A.;Libralato, M.;
2024

Abstract

ω Centauri, the most massive globular cluster in the Milky Way, has long been suspected to be the stripped nucleus of a dwarf galaxy that fell into the Galaxy a long time ago. There is considerable evidence for this scenario including a large spread in metallicity and an unusually large number of distinct subpopulations seen in photometric studies. In this work, we use new Multi-Unit Spectroscopic Explorer spectroscopic and Hubble Space Telescope photometric catalogs to investigate the underlying metallicity distributions as well as the spatial variations of the populations within the cluster up to its half-light radius. Based on 11,050 member stars, the [M/H] distribution has a median of (−1.614 ± 0.003) dex and a large spread of ∼1.37 dex, reaching from −0.67 to −2.04 dex for 99.7% of the stars. In addition, we show the chromosome map of the cluster, which separates the red giant branch stars into different subpopulations, and analyze the subpopulations of the most metal-poor component. Finally, we do not find any metallicity gradient within the half-light radius, and the different subpopulations are well mixed.
File in questo prodotto:
File Dimensione Formato  
Nitschai_2024_ApJ_970_152.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 42.11 MB
Formato Adobe PDF
42.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact