Tuneable phase plates for free electrons are a highly active area of research. However, their widespread implementation, similar to that of spatial light modulators in light optics, has been hindered by both conceptual and technical challenges. A specific technical challenge involves the need to minimize obstruction of the electron beam by supporting films and electrodes. Here, we describe numerical and analytical mathematical frameworks for three-dimensional stacks of phase plates that can be used to provide near-arbitrary electron beam shaping with minimal obstruction.
Three-dimensional Stacking of Phase Plates for Advanced Electron Beam Shaping
Ruffato, Gianluca;
2024
Abstract
Tuneable phase plates for free electrons are a highly active area of research. However, their widespread implementation, similar to that of spatial light modulators in light optics, has been hindered by both conceptual and technical challenges. A specific technical challenge involves the need to minimize obstruction of the electron beam by supporting films and electrodes. Here, we describe numerical and analytical mathematical frameworks for three-dimensional stacks of phase plates that can be used to provide near-arbitrary electron beam shaping with minimal obstruction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ozae108 (1).pdf
accesso aperto
Descrizione: articolo
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.