Finding dense subnetworks, with density based on edges or more complex structures, such as subgraphs or k-cliques, is a fundamental algorithmic problem with many applications. While the problem has been studied extensively in static networks, much remains to be explored for temporal networks. In this work we introduce the novel problem of identifying the temporal motif densest subnetwork, i.e., the densest subnetwork with respect to temporal motifs, which are high-order patterns characterizing temporal networks. Identifying temporal motifs is an extremely challenging task, and thus, efficient methods are required. To address this challenge, we design two novel randomized approximation algorithms with rigorous probabilistic guarantees that provide high-quality solutions. We perform extensive experiments showing that our methods outperform baselines. Furthermore, our algorithms scale on networks with up to billions of temporal edges, while baselines cannot handle such large networks. We use our techniques to analyze a financial network and show that our formulation reveals important network structures, such as bursty temporal events and communities of users with similar interests.

Scalable Temporal Motif Densest Subnetwork Discovery

Vandin, Fabio;
2024

Abstract

Finding dense subnetworks, with density based on edges or more complex structures, such as subgraphs or k-cliques, is a fundamental algorithmic problem with many applications. While the problem has been studied extensively in static networks, much remains to be explored for temporal networks. In this work we introduce the novel problem of identifying the temporal motif densest subnetwork, i.e., the densest subnetwork with respect to temporal motifs, which are high-order patterns characterizing temporal networks. Identifying temporal motifs is an extremely challenging task, and thus, efficient methods are required. To address this challenge, we design two novel randomized approximation algorithms with rigorous probabilistic guarantees that provide high-quality solutions. We perform extensive experiments showing that our methods outperform baselines. Furthermore, our algorithms scale on networks with up to billions of temporal edges, while baselines cannot handle such large networks. We use our techniques to analyze a financial network and show that our formulation reveals important network structures, such as bursty temporal events and communities of users with similar interests.
2024
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2024
File in questo prodotto:
File Dimensione Formato  
3637528.3671889 (1).pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3541957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact