This study focuses on the self-assembly mechanisms of triple- and quadruple-stranded lanthanide cages and their solution behaviour, particularly concerning equilibrium and cage interconversion. A systematic investigation was conducted to unravel the formation process of lanthanide cages based on bisβ-diketonato ligands. By employing diamagnetic La3+ ions, NMR spectroscopy coupled with ESI-MS analyses revealed the consecutive and competitive formation of four different species: [La2L]4+, [La2L2] 2+, [La2L3], and [La2L4] 2−. Moreover, stepwise and overall stability constants were derived. Further studies on the energetics of the equilibrium between the two most stable species, the triple-stranded [La2L3] and quadruple-stranded [La2L4] 2− cages, were conducted through variable temperature analyses, indicating that the interconversion is exergonic, endothermic and mainly entropy driven. DFT thermochemical calculations involving an explicitly coordinated solvent allowed for a better evaluation of the role of enthalpic and entropic factors in step-by-step ligand association.
Unravelling the formation pathway and energetic landscape of lanthanide cages based on bis-β-diketonato ligands
Rando, Maria;Carlotto, Silvia;Armelao, Lidia
2024
Abstract
This study focuses on the self-assembly mechanisms of triple- and quadruple-stranded lanthanide cages and their solution behaviour, particularly concerning equilibrium and cage interconversion. A systematic investigation was conducted to unravel the formation process of lanthanide cages based on bisβ-diketonato ligands. By employing diamagnetic La3+ ions, NMR spectroscopy coupled with ESI-MS analyses revealed the consecutive and competitive formation of four different species: [La2L]4+, [La2L2] 2+, [La2L3], and [La2L4] 2−. Moreover, stepwise and overall stability constants were derived. Further studies on the energetics of the equilibrium between the two most stable species, the triple-stranded [La2L3] and quadruple-stranded [La2L4] 2− cages, were conducted through variable temperature analyses, indicating that the interconversion is exergonic, endothermic and mainly entropy driven. DFT thermochemical calculations involving an explicitly coordinated solvent allowed for a better evaluation of the role of enthalpic and entropic factors in step-by-step ligand association.File | Dimensione | Formato | |
---|---|---|---|
d4qi02530j.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.