This study focuses on the self-assembly mechanisms of triple- and quadruple-stranded lanthanide cages and their solution behaviour, particularly concerning equilibrium and cage interconversion. A systematic investigation was conducted to unravel the formation process of lanthanide cages based on bisβ-diketonato ligands. By employing diamagnetic La3+ ions, NMR spectroscopy coupled with ESI-MS analyses revealed the consecutive and competitive formation of four different species: [La2L]4+, [La2L2] 2+, [La2L3], and [La2L4] 2−. Moreover, stepwise and overall stability constants were derived. Further studies on the energetics of the equilibrium between the two most stable species, the triple-stranded [La2L3] and quadruple-stranded [La2L4] 2− cages, were conducted through variable temperature analyses, indicating that the interconversion is exergonic, endothermic and mainly entropy driven. DFT thermochemical calculations involving an explicitly coordinated solvent allowed for a better evaluation of the role of enthalpic and entropic factors in step-by-step ligand association.

Unravelling the formation pathway and energetic landscape of lanthanide cages based on bis-β-diketonato ligands

Rando, Maria;Carlotto, Silvia;Armelao, Lidia
2024

Abstract

This study focuses on the self-assembly mechanisms of triple- and quadruple-stranded lanthanide cages and their solution behaviour, particularly concerning equilibrium and cage interconversion. A systematic investigation was conducted to unravel the formation process of lanthanide cages based on bisβ-diketonato ligands. By employing diamagnetic La3+ ions, NMR spectroscopy coupled with ESI-MS analyses revealed the consecutive and competitive formation of four different species: [La2L]4+, [La2L2] 2+, [La2L3], and [La2L4] 2−. Moreover, stepwise and overall stability constants were derived. Further studies on the energetics of the equilibrium between the two most stable species, the triple-stranded [La2L3] and quadruple-stranded [La2L4] 2− cages, were conducted through variable temperature analyses, indicating that the interconversion is exergonic, endothermic and mainly entropy driven. DFT thermochemical calculations involving an explicitly coordinated solvent allowed for a better evaluation of the role of enthalpic and entropic factors in step-by-step ligand association.
File in questo prodotto:
File Dimensione Formato  
d4qi02530j.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3541918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact