While operating a quantum random-number generator (QRNG), it is extremely useful to have a model of the physical entropy source to guarantee that the device is delivering randomness of genuine quantum origin. In this work we consider a QRNG based on a gain-switched laser diode and we develop a model to quantify its phase noise. This model is based on the laser rate equations and the state-of-the-art techniques for the characterization of laser diodes used in lightwave systems. These tools let us achieve a faithful modeling of the phase noise and we verify its accuracy through comparisons with experimental measurements. Furthermore, the model can be used to select optimal parameters to maximize the QRNG performance and monitor the device behavior to detect malfunctioning or malicious tampering of the device.

Characterizing Phase Noise in a Gain-Switched Laser Diode for Quantum Random-Number Generation

Marangon, D. G.
;
2021

Abstract

While operating a quantum random-number generator (QRNG), it is extremely useful to have a model of the physical entropy source to guarantee that the device is delivering randomness of genuine quantum origin. In this work we consider a QRNG based on a gain-switched laser diode and we develop a model to quantify its phase noise. This model is based on the laser rate equations and the state-of-the-art techniques for the characterization of laser diodes used in lightwave systems. These tools let us achieve a faithful modeling of the phase noise and we verify its accuracy through comparisons with experimental measurements. Furthermore, the model can be used to select optimal parameters to maximize the QRNG performance and monitor the device behavior to detect malfunctioning or malicious tampering of the device.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3541412
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact