The yield point marks the beginning of plastic deformation for a solid subjected to sufficient stress, but it can alternatively be reached by x-ray irradiation. We characterize this latter route in terms of thermodynamics, structure and dynamics for a series of GeSe3 chalcogenide glasses with different amount of disorder. We show that a sufficiently long irradiation at room temperature results in a stationary and unique yielding state, independent of the initial state of the glass. The glass at yield is more disordered and has higher enthalpy than the annealed glass, but its properties are not extreme: they rather match those of a glass instantaneously quenched from a temperature 20% higher than the glass-transition temperature. This is a well-known, key temperature for glass-forming liquids which marks the location of a dynamical transition, and it is remarkable that different glasses upon irradiation head all there.

Uniqueness of glasses prepared via x-ray induced yielding

Baglioni, Jacopo
;
Martinelli, Alessandro;Sun, Peihao;Dallari, Francesco;Monaco, Giulio
2024

Abstract

The yield point marks the beginning of plastic deformation for a solid subjected to sufficient stress, but it can alternatively be reached by x-ray irradiation. We characterize this latter route in terms of thermodynamics, structure and dynamics for a series of GeSe3 chalcogenide glasses with different amount of disorder. We show that a sufficiently long irradiation at room temperature results in a stationary and unique yielding state, independent of the initial state of the glass. The glass at yield is more disordered and has higher enthalpy than the annealed glass, but its properties are not extreme: they rather match those of a glass instantaneously quenched from a temperature 20% higher than the glass-transition temperature. This is a well-known, key temperature for glass-forming liquids which marks the location of a dynamical transition, and it is remarkable that different glasses upon irradiation head all there.
2024
File in questo prodotto:
File Dimensione Formato  
Baglioni_2024_Rep._Prog._Phys._87_120503..pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact