We consider the problem of clustering functional data according to their covariance structure. We contribute a soft clustering methodology based on the Wasserstein-Procrustes distance, where the in-between cluster variability is penalized by a term proportional to the entropy of the partition matrix. In this way, each covariance operator can be partially classified into more than one group. Such soft classification allows for clusters to overlap, and arises naturally in situations where the separation between all or some of the clusters is not well-defined. We also discuss how to estimate the number of groups and to test for the presence of any cluster structure. The algorithm is illustrated using simulated and real data. An R implementation is available in the Appendix S1.
Covariance‐based soft clustering of functional data based on the Wasserstein–Procrustes metric
Masarotto, Guido
2024
Abstract
We consider the problem of clustering functional data according to their covariance structure. We contribute a soft clustering methodology based on the Wasserstein-Procrustes distance, where the in-between cluster variability is penalized by a term proportional to the entropy of the partition matrix. In this way, each covariance operator can be partially classified into more than one group. Such soft classification allows for clusters to overlap, and arises naturally in situations where the separation between all or some of the clusters is not well-defined. We also discuss how to estimate the number of groups and to test for the presence of any cluster structure. The algorithm is illustrated using simulated and real data. An R implementation is available in the Appendix S1.File | Dimensione | Formato | |
---|---|---|---|
Scandinavian J Statistics - 2023 - Masarotto - Covariance‐based soft clustering of functional data based on the Wasserstein.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
3.78 MB
Formato
Adobe PDF
|
3.78 MB | Adobe PDF | Visualizza/Apri |
sjos12692-sup-0001-supinfo.zip
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
2.06 MB
Formato
Zip File
|
2.06 MB | Zip File | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.