We apply a suite of different estimators to the Quijote-PNG halo catalogues to find the best approach to constrain Primordial non-Gaussianity (PNG) at non-linear cosmological scales, up to $k_{\rm max} = 0.5 \, h\,{\rm Mpc}^{-1}$. The set of summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function, marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the context of PNG study. We perform a Fisher analysis to estimate their cosmological information content, showing substantial improvements when marked observables are added to the analysis. Starting from these summaries, we train deep neural networks (NN) to perform likelihood-free inference of cosmological and PNG parameters. We assess the performance of different subsets of summary statistics; in the case of $f_\mathrm{NL}^\mathrm{equil}$, we find that a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyse the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if these are deemed more reliable.

Quijote-PNG: Optimizing the summary statistics to measure Primordial non-Gaussianity

Gabriel Jung
Membro del Collaboration Group
;
Andrea Ravenni
Membro del Collaboration Group
;
Michele Liguori
Membro del Collaboration Group
;
2024

Abstract

We apply a suite of different estimators to the Quijote-PNG halo catalogues to find the best approach to constrain Primordial non-Gaussianity (PNG) at non-linear cosmological scales, up to $k_{\rm max} = 0.5 \, h\,{\rm Mpc}^{-1}$. The set of summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function, marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the context of PNG study. We perform a Fisher analysis to estimate their cosmological information content, showing substantial improvements when marked observables are added to the analysis. Starting from these summaries, we train deep neural networks (NN) to perform likelihood-free inference of cosmological and PNG parameters. We assess the performance of different subsets of summary statistics; in the case of $f_\mathrm{NL}^\mathrm{equil}$, we find that a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyse the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if these are deemed more reliable.
File in questo prodotto:
File Dimensione Formato  
Jung_2024_ApJ_976_109.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact