We investigate the Wavelet Scattering Transform (WST) as a tool for the study of Primordial non-Gaussianity (PNG) in Large Scale Structure (LSS), and compare its performance with that achievable via a joint analysis with power spectrum and bispectrum (P+B). We consider the three main primordial bispectrum shapes - local, equilateral and orthogonal - and produce Fisher forecast for the corresponding fNL amplitude parameters, jointly with standard cosmological parameters. We analyze simulations from the publicly available "Quijote" and "Quijote-png" N-body suites, studying both the dark matter and halo fields. We find that the WST outperforms the power spectrum alone on all parameters, both on the fNL's and on cosmological ones. In particular, on fNL_loc for halos, the improvement is about 27%. When B is combined with P, halo constraints from WST are weaker for fNL_loc (at ~ 15% level), but stronger for fNL_eq (~ 25%) and fNL_ortho (~ 28%). Our results show that WST, both alone and in combination with P+B, can improve the extraction of information on PNG from LSS data over the one attainable by a standard P+B analysis. Moreover, we identify a class of WST in which the origin of the extra information on PNG can be cleanly isolated.

Constraining Primordial Non-Gaussianity from Large Scale Structure with the Wavelet Scattering Transform

Gabriel Jung
Membro del Collaboration Group
;
Michele Liguori
Membro del Collaboration Group
;
2024

Abstract

We investigate the Wavelet Scattering Transform (WST) as a tool for the study of Primordial non-Gaussianity (PNG) in Large Scale Structure (LSS), and compare its performance with that achievable via a joint analysis with power spectrum and bispectrum (P+B). We consider the three main primordial bispectrum shapes - local, equilateral and orthogonal - and produce Fisher forecast for the corresponding fNL amplitude parameters, jointly with standard cosmological parameters. We analyze simulations from the publicly available "Quijote" and "Quijote-png" N-body suites, studying both the dark matter and halo fields. We find that the WST outperforms the power spectrum alone on all parameters, both on the fNL's and on cosmological ones. In particular, on fNL_loc for halos, the improvement is about 27%. When B is combined with P, halo constraints from WST are weaker for fNL_loc (at ~ 15% level), but stronger for fNL_eq (~ 25%) and fNL_ortho (~ 28%). Our results show that WST, both alone and in combination with P+B, can improve the extraction of information on PNG from LSS data over the one attainable by a standard P+B analysis. Moreover, we identify a class of WST in which the origin of the extra information on PNG can be cleanly isolated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact