We present a novel combination of the excursion-set approach with the peak theory formalism in Lagrangian space and provide accurate predictions for halo and void statistics over a wide range of scales. The set-up is based on an effective moving barrier. Besides deriving the corresponding numerical multiplicity function, we introduce a new analytical formula reaching the percent level agreement with the exact numerical solution obtained via Monte Carlo realisations down to small scales, similar to 1012h-1M circle dot. In the void case, we derive the dependence of the effective moving barrier on the void formation threshold, delta v , by comparison against the Lagrangian void size function measured in the DEMNUni simulations. We discuss the mapping from Lagrangian to Eulerian space for both haloes and voids; adopting the spherical symmetry approximation, we obtain a strong agreement at intermediate and large scales. Finally, using the effective moving barrier, we derive Lagrangian void density profiles accurately matching measurements from cosmological simulations, a major achievement towards using void profiles for precision cosmology with the next generation of galaxy surveys.

The universal multiplicity function: counting haloes and voids

Verza, Giovanni;Matarrese, Sabino
2024

Abstract

We present a novel combination of the excursion-set approach with the peak theory formalism in Lagrangian space and provide accurate predictions for halo and void statistics over a wide range of scales. The set-up is based on an effective moving barrier. Besides deriving the corresponding numerical multiplicity function, we introduce a new analytical formula reaching the percent level agreement with the exact numerical solution obtained via Monte Carlo realisations down to small scales, similar to 1012h-1M circle dot. In the void case, we derive the dependence of the effective moving barrier on the void formation threshold, delta v , by comparison against the Lagrangian void size function measured in the DEMNUni simulations. We discuss the mapping from Lagrangian to Eulerian space for both haloes and voids; adopting the spherical symmetry approximation, we obtain a strong agreement at intermediate and large scales. Finally, using the effective moving barrier, we derive Lagrangian void density profiles accurately matching measurements from cosmological simulations, a major achievement towards using void profiles for precision cosmology with the next generation of galaxy surveys.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact