Diatomaceous soils, composed of diatom fossils and clay minerals typically formed in volcanic environments, exhibit characteristics such as low unit weight, high plasticity and liquid limit, significant compressibility, and high friction angles. Despite their presence in various locations globally, knowledge about their geotechnical behavior is limited and primarily based on laboratory tests conducted on artificial samples. This paper presents data obtained from undisturbed samples of natural diatomaceous soils and discusses the interpretation of Cone Penetration Test with Pore Pressure (CPTU) data to classify these complex non-textbook soils and estimate their mechanical properties. The study area is situated in the Po Plain near the thermal anomaly region of the Euganean Hills in Northeast Italy. Three CPTUs and one borehole with the collection of four Osterberg undisturbed samples were conducted. Laboratory tests on the undisturbed samples provided values for Atterberg Limits, soil unit weight, in-situ void ratio, compressibility, and permeability, which were compared with estimations derived from CPTU data analysis. Moreover, Scanning Electron Microscope images provided insight into the distinctive microstructure of diatom microfossils embedded in a clayey matrix. Based on these comparisons, CPTU proves to be effective in estimating relevant parameters of diatomaceous soils, particularly the Soil Behavior Type (SBT) and consolidation coefficient from dissipation tests. However, the agreement in estimating the oedometric modulus is less satisfactory. Therefore, for a precise definition of the geotechnical model, it is recommended to conduct additional laboratory tests, particularly those focused on defining compressibility parameters, given the unique behavior of natural diatomaceous soils.
Applicability of CPTU to characterize diatomaceous fine-grained soils: a case study in Euganean Hills (Italy)
Dalla Santa G
;Ceccato F.;Simonini P.
2024
Abstract
Diatomaceous soils, composed of diatom fossils and clay minerals typically formed in volcanic environments, exhibit characteristics such as low unit weight, high plasticity and liquid limit, significant compressibility, and high friction angles. Despite their presence in various locations globally, knowledge about their geotechnical behavior is limited and primarily based on laboratory tests conducted on artificial samples. This paper presents data obtained from undisturbed samples of natural diatomaceous soils and discusses the interpretation of Cone Penetration Test with Pore Pressure (CPTU) data to classify these complex non-textbook soils and estimate their mechanical properties. The study area is situated in the Po Plain near the thermal anomaly region of the Euganean Hills in Northeast Italy. Three CPTUs and one borehole with the collection of four Osterberg undisturbed samples were conducted. Laboratory tests on the undisturbed samples provided values for Atterberg Limits, soil unit weight, in-situ void ratio, compressibility, and permeability, which were compared with estimations derived from CPTU data analysis. Moreover, Scanning Electron Microscope images provided insight into the distinctive microstructure of diatom microfossils embedded in a clayey matrix. Based on these comparisons, CPTU proves to be effective in estimating relevant parameters of diatomaceous soils, particularly the Soil Behavior Type (SBT) and consolidation coefficient from dissipation tests. However, the agreement in estimating the oedometric modulus is less satisfactory. Therefore, for a precise definition of the geotechnical model, it is recommended to conduct additional laboratory tests, particularly those focused on defining compressibility parameters, given the unique behavior of natural diatomaceous soils.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.