: The development of peroxidase mimic nanocatalysts is relevant for oxidation reactions in biosensing, environmental monitoring and green chemical processes. Several nanomaterials have been proposed as peroxidase mimic, the majority of which consists of noble metals and oxide nanoparticles (NPs). Yet, there is still limited information about how the change in the composition influences their catalytic activity. Here, the peroxidase mimic behaviour of gold NPs is compared to a traditional nanoalloy as Au-Ag and to the Au-Fe and the Au-Co nanoalloys, which were not tested before as oxidation catalysts. Since the alloys of gold with iron and cobalt are thermodynamically unstable, laser ablation in liquid (LAL) is exploited for the synthesis of these NPs. Using LAL, no chemical stabilizers or capping agents are present on the NPs surface, allowing the evaluation of the oxidation behaviour as a function of the alloy composition. The results point to the importance of surface gold atoms in the catalytic process, but also indicate the possibility of obtaining active nanocatalysts with a lower content of Au by alloying it with iron, which is earth-abundant, non-toxic and low cost. Overall, Au nanoalloys are worth consideration as a more sustainable alternative to pure Au nanocatalysts for oxidation reactions.

Surface Gold Atoms Determine Peroxidase Mimic Activity in Gold Alloy Nanoparticles

Spataro, Giulia Maria;Yang, Jijin;Coviello, Vito;Agnoli, Stefano;Amendola, Vincenzo
2024

Abstract

: The development of peroxidase mimic nanocatalysts is relevant for oxidation reactions in biosensing, environmental monitoring and green chemical processes. Several nanomaterials have been proposed as peroxidase mimic, the majority of which consists of noble metals and oxide nanoparticles (NPs). Yet, there is still limited information about how the change in the composition influences their catalytic activity. Here, the peroxidase mimic behaviour of gold NPs is compared to a traditional nanoalloy as Au-Ag and to the Au-Fe and the Au-Co nanoalloys, which were not tested before as oxidation catalysts. Since the alloys of gold with iron and cobalt are thermodynamically unstable, laser ablation in liquid (LAL) is exploited for the synthesis of these NPs. Using LAL, no chemical stabilizers or capping agents are present on the NPs surface, allowing the evaluation of the oxidation behaviour as a function of the alloy composition. The results point to the importance of surface gold atoms in the catalytic process, but also indicate the possibility of obtaining active nanocatalysts with a lower content of Au by alloying it with iron, which is earth-abundant, non-toxic and low cost. Overall, Au nanoalloys are worth consideration as a more sustainable alternative to pure Au nanocatalysts for oxidation reactions.
2024
File in questo prodotto:
File Dimensione Formato  
ChemPhysChem - 2024 - Spataro - Surface Gold Atoms Determine Peroxidase Mimic Activity in Gold Alloy Nanoparticles.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540181
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact