Conductive polymers, such as polyaniline (PANI), have interesting applications, ranging from flexible electronics, energy storage devices, sensors, antistatic or anticorrosion coatings, etc. However, the full exploitation of conductive polymers still poses a challenge due to their low processability. The use of compatible stabilizers to obtain dispersible and stable colloids is among the possible solutions to overcome such drawbacks. In this work, potato starch was used as a steric stabilizer for the preparation of colloidal polyaniline (emeraldine salt, ES)/starch composites by exploiting the oxidative polymerization of aniline in aqueous solutions with various starch-to-aniline ratios. The polyaniline/starch bio-composites were subjected to structural, spectroscopic, thermal, morphological, and electrochemical analyses. The samples were then tested for their dispersibility/solubility in a range of organic solvents. The results demonstrated the formation of PANI/starch biocomposites with a smaller average size than starch particles, showing improved aqueous dispersion and enhanced solubility in organic solvents. With respect to previously reported PANI-EB (emeraldine base)/starch composites, the novel colloids displayed a lower overall crystallinity, but the conductive nature of PANI-ES enhanced its electrochemical properties, resulting in richer redox chemistry, particularly evident in its oxidation behavior, as observed through cyclic voltammetry. Finally, as proof of the improved processability, the colloids were successfully integrated into a thin polyether sulfone (PES) membrane. © 2024 by the authors.
Synthesis and Characterization of Polyaniline Emeraldine Salt (PANI-ES) Colloids Using Potato Starch as a Stabilizer to Enhance the Physicochemical Properties and Processability
Boudjelida, S.;Li, X.;Carraro, M.
2024
Abstract
Conductive polymers, such as polyaniline (PANI), have interesting applications, ranging from flexible electronics, energy storage devices, sensors, antistatic or anticorrosion coatings, etc. However, the full exploitation of conductive polymers still poses a challenge due to their low processability. The use of compatible stabilizers to obtain dispersible and stable colloids is among the possible solutions to overcome such drawbacks. In this work, potato starch was used as a steric stabilizer for the preparation of colloidal polyaniline (emeraldine salt, ES)/starch composites by exploiting the oxidative polymerization of aniline in aqueous solutions with various starch-to-aniline ratios. The polyaniline/starch bio-composites were subjected to structural, spectroscopic, thermal, morphological, and electrochemical analyses. The samples were then tested for their dispersibility/solubility in a range of organic solvents. The results demonstrated the formation of PANI/starch biocomposites with a smaller average size than starch particles, showing improved aqueous dispersion and enhanced solubility in organic solvents. With respect to previously reported PANI-EB (emeraldine base)/starch composites, the novel colloids displayed a lower overall crystallinity, but the conductive nature of PANI-ES enhanced its electrochemical properties, resulting in richer redox chemistry, particularly evident in its oxidation behavior, as observed through cyclic voltammetry. Finally, as proof of the improved processability, the colloids were successfully integrated into a thin polyether sulfone (PES) membrane. © 2024 by the authors.File | Dimensione | Formato | |
---|---|---|---|
materials-17-02941-v2.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.