We investigate the breathing mode and the stability of a quantum droplet in a tightly trapped one-dimensional dipolar gas of bosonic atoms. When the droplet with a flat -top density profile is formed, the breathing -mode frequency scales as the inverse of the number of atoms in the cloud. This is straightforwardly derived within a phenomenological hydrodynamical approach and confirmed using both a variational method based on a generalized Gross-Pitaevskii action functional and the sum -rule approach. We extend our analysis also to the presence of axial confinement showing the effect of the trap on the density profile and therefore on the breathing -mode frequency scaling. Our analysis confirms the stability of the quantum droplet against the particle emission when the flat -top density profile is observed. Our results can be used as a guide to the experimental investigations of collective modes to detect the formation of quantum droplets in quasi -one-dimensional dipolar gases.

Breathing mode of a quantum droplet in a quasi-one-dimensional dipolar Bose gas

Salasnich, L.;
2024

Abstract

We investigate the breathing mode and the stability of a quantum droplet in a tightly trapped one-dimensional dipolar gas of bosonic atoms. When the droplet with a flat -top density profile is formed, the breathing -mode frequency scales as the inverse of the number of atoms in the cloud. This is straightforwardly derived within a phenomenological hydrodynamical approach and confirmed using both a variational method based on a generalized Gross-Pitaevskii action functional and the sum -rule approach. We extend our analysis also to the presence of axial confinement showing the effect of the trap on the density profile and therefore on the breathing -mode frequency scaling. Our analysis confirms the stability of the quantum droplet against the particle emission when the flat -top density profile is observed. Our results can be used as a guide to the experimental investigations of collective modes to detect the formation of quantum droplets in quasi -one-dimensional dipolar gases.
2024
File in questo prodotto:
File Dimensione Formato  
PhysRevA.109.043316.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 778.07 kB
Formato Adobe PDF
778.07 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2401.03918v2.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 830.77 kB
Formato Adobe PDF
830.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3539394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex 3
social impact