PurposesIn kettlebell sport (KS) half marathon, the lift of the kettlebell is required for the highest number of repetitions in 30 min. No data are available on cardiorespiratory and metabolic responses during this exercise routine. The aim of the study was to evaluate cardiopulmonary and metabolic responses to KS half marathon compared to 30 min treadmill running, chosen as a reference paradigm of aerobic exercise, at the same average oxygen consumption (VO2).MethodsA male elite KS athlete was enrolled in two trials separated by 7 days of rest. In the first trial, one-hand long-cycle KS exercise with a 1/3 body weight kettlebell was performed for 30 min (kettlebell half marathon, KT); in the second trial, 30 min treadmill running (TR) was performed at the same average VO2 measured in the first trial (speed 9-10 km/h at 1 degrees uphill inclination). Metabolic and cardiopulmonary assessments [respiratory exchange ratio (RER), tidal volume (TV), breathing frequency (f), minute ventilation (VE)], blood lactate (BL) kinetics, heart rate (HR), and blood pressure (BP) were measured in both experimental sessions.ResultsThe average VO2 was 33.3 mL/min/kg in KT and 30.6 mL/min/kg in TR. The subject achieved RERpeak 1.17, RERmean 0.98, HRpeak 172 bpm (94% HRmax), HRmean 86% of HRmax, BPpeak 220/100 mmHg in KT, BLpeak 7.2 mmol/L (during trial) in KT and RERpeak 1.13, RERmean 0.89, HRpeak 142 bpm (78% HRmax), HRmean 70% of HRmax, BPpeak 160/80 mmHg, BLpeak 3.5 mmol/L (4 min after trial) mmol/L in TR.ConclusionData indicate that a KS half marathon determines much higher cardiopulmonary and metabolic responses to treadmill running performed at similar VO2.

Comparison of Cardiorespiratory and Metabolic Responses Between Kettlebell Half Marathon and Treadmill Running at the Same Average Oxygen Consumption: A Case Study

Greco, Davide;Cerullo, Giuseppe;
2020

Abstract

PurposesIn kettlebell sport (KS) half marathon, the lift of the kettlebell is required for the highest number of repetitions in 30 min. No data are available on cardiorespiratory and metabolic responses during this exercise routine. The aim of the study was to evaluate cardiopulmonary and metabolic responses to KS half marathon compared to 30 min treadmill running, chosen as a reference paradigm of aerobic exercise, at the same average oxygen consumption (VO2).MethodsA male elite KS athlete was enrolled in two trials separated by 7 days of rest. In the first trial, one-hand long-cycle KS exercise with a 1/3 body weight kettlebell was performed for 30 min (kettlebell half marathon, KT); in the second trial, 30 min treadmill running (TR) was performed at the same average VO2 measured in the first trial (speed 9-10 km/h at 1 degrees uphill inclination). Metabolic and cardiopulmonary assessments [respiratory exchange ratio (RER), tidal volume (TV), breathing frequency (f), minute ventilation (VE)], blood lactate (BL) kinetics, heart rate (HR), and blood pressure (BP) were measured in both experimental sessions.ResultsThe average VO2 was 33.3 mL/min/kg in KT and 30.6 mL/min/kg in TR. The subject achieved RERpeak 1.17, RERmean 0.98, HRpeak 172 bpm (94% HRmax), HRmean 86% of HRmax, BPpeak 220/100 mmHg in KT, BLpeak 7.2 mmol/L (during trial) in KT and RERpeak 1.13, RERmean 0.89, HRpeak 142 bpm (78% HRmax), HRmean 70% of HRmax, BPpeak 160/80 mmHg, BLpeak 3.5 mmol/L (4 min after trial) mmol/L in TR.ConclusionData indicate that a KS half marathon determines much higher cardiopulmonary and metabolic responses to treadmill running performed at similar VO2.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-988663705.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 638.96 kB
Formato Adobe PDF
638.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3537903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact