The early identification of a subclinical rejection (SCR) can improve the long-term outcome of the transplanted kidney through intensified immunosuppression. However, the only approved diagnostic method is the protocol biopsy, which remains an invasive method and not without minor and/or major complications. The protocol biopsy is defined as the sampling of allograft tissue at pre-established times even in the absence of an impaired renal function; however, it does not avoid histological damage. Therefore, the discovery of new possible biomarkers useful in the prevention of SCR has gained great interest. Among all the possible candidates, there are microRNAs (miRNAs), which are short, noncoding RNA sequences, that are involved in mediating numerous post-transcriptional pathways. They can be found not only in tissues, but also in different biological fluids, both as free particles and contained in extracellular vesicles (EVs) released by different cell types. In this study, we firstly performed a retrospective miRNA screening analysis on biopsies and serum EV samples of 20 pediatric transplanted patients, followed by a second screening on another 10 pediatric transplanted patients’ urine samples at one year post-transplant. In both cohorts, we divided the patients into two groups: patients with histological SCR and patients without histological SCR at one year post-transplantation. The isolated miRNAs were analyzed in an NGS platform to identify different expressions in the two allograft states. Although no statistical data were found in sera, in the tissue and urinary EVs, we highlighted signatures of miRNAs associated with the histological SCR state.
New Insights into Pediatric Kidney Transplant Rejection Biomarkers: Tissue, Plasma and Urine MicroRNAs Compared to Protocol Biopsy Histology
Antoniello B.Methodology
;Collino F.Methodology
;Bertoldi L.Formal Analysis
;Vedovelli L.Formal Analysis
;Negrisolo S.
Conceptualization
2024
Abstract
The early identification of a subclinical rejection (SCR) can improve the long-term outcome of the transplanted kidney through intensified immunosuppression. However, the only approved diagnostic method is the protocol biopsy, which remains an invasive method and not without minor and/or major complications. The protocol biopsy is defined as the sampling of allograft tissue at pre-established times even in the absence of an impaired renal function; however, it does not avoid histological damage. Therefore, the discovery of new possible biomarkers useful in the prevention of SCR has gained great interest. Among all the possible candidates, there are microRNAs (miRNAs), which are short, noncoding RNA sequences, that are involved in mediating numerous post-transcriptional pathways. They can be found not only in tissues, but also in different biological fluids, both as free particles and contained in extracellular vesicles (EVs) released by different cell types. In this study, we firstly performed a retrospective miRNA screening analysis on biopsies and serum EV samples of 20 pediatric transplanted patients, followed by a second screening on another 10 pediatric transplanted patients’ urine samples at one year post-transplant. In both cohorts, we divided the patients into two groups: patients with histological SCR and patients without histological SCR at one year post-transplantation. The isolated miRNAs were analyzed in an NGS platform to identify different expressions in the two allograft states. Although no statistical data were found in sera, in the tissue and urinary EVs, we highlighted signatures of miRNAs associated with the histological SCR state.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.