: Background: Diabetes, particularly type 2 diabetes (T2D), is linked with an increased risk of developing coronary heart disease (CHD). The present study aimed to evaluate potential circulating biomarkers of CHD by adopting a targeted proteomic approach based on proximity extension assays (PEA). Methods: The study was based on 30 patients with both T2D and CHD (group DC), 30 patients with T2D without CHD (group DN) and 29 patients without diabetes but with a diagnosis of CHD (group NC). Plasma samples were analyzed using PEA, with an Olink Target 96 cardiometabolic panel expressed as normalized protein expression (NPX) units. Results: Lysosomal Pro-X carboxypeptidase (PRCP), Liver carboxylesterase 1 (CES1), Complement C2 (C2), and Intercellular adhesion molecule 3 (ICAM3) were lower in the DC and NC groups compared with the DN groups. Lithostathine-1-alpha (REG1A) and Immunoglobulin lambda constant 2 (IGLC2) were found higher in the DC group compared to DN and NC groups. ROC analysis suggested a significant ability of the six proteins to distinguish among the three groups (whole model test p < 0.0001, AUC 0.83-0.88), with a satisfactory discriminating performance in terms of sensitivity (77-90%) and specificity (70-90%). A possible role of IGLC2, PRCP, and REG1A in indicating kidney impairment was found, with a sensitivity of 92% and specificity of 83%. Conclusions: The identified panel of six plasma proteins, using a targeted proteomic approach, provided evidence that these parameters could be considered in the chronic evolution of T2D and its complications.
Circulating Factors as Potential Biomarkers of Cardiovascular Damage Progression Associated with Type 2 Diabetes
Sartore, Giovanni;Ragazzi, Eugenio;Lapolla, Annunziata;
2024
Abstract
: Background: Diabetes, particularly type 2 diabetes (T2D), is linked with an increased risk of developing coronary heart disease (CHD). The present study aimed to evaluate potential circulating biomarkers of CHD by adopting a targeted proteomic approach based on proximity extension assays (PEA). Methods: The study was based on 30 patients with both T2D and CHD (group DC), 30 patients with T2D without CHD (group DN) and 29 patients without diabetes but with a diagnosis of CHD (group NC). Plasma samples were analyzed using PEA, with an Olink Target 96 cardiometabolic panel expressed as normalized protein expression (NPX) units. Results: Lysosomal Pro-X carboxypeptidase (PRCP), Liver carboxylesterase 1 (CES1), Complement C2 (C2), and Intercellular adhesion molecule 3 (ICAM3) were lower in the DC and NC groups compared with the DN groups. Lithostathine-1-alpha (REG1A) and Immunoglobulin lambda constant 2 (IGLC2) were found higher in the DC group compared to DN and NC groups. ROC analysis suggested a significant ability of the six proteins to distinguish among the three groups (whole model test p < 0.0001, AUC 0.83-0.88), with a satisfactory discriminating performance in terms of sensitivity (77-90%) and specificity (70-90%). A possible role of IGLC2, PRCP, and REG1A in indicating kidney impairment was found, with a sensitivity of 92% and specificity of 83%. Conclusions: The identified panel of six plasma proteins, using a targeted proteomic approach, provided evidence that these parameters could be considered in the chronic evolution of T2D and its complications.File | Dimensione | Formato | |
---|---|---|---|
proteomes-12-00029.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
4.64 MB
Formato
Adobe PDF
|
4.64 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.