One of the most valuable and promising applications for Unmanned aerial vehicles (UAVs) is in natural disaster management, where these aircraft can operate autonomously without any need for human intervention during their flights. In this paper, we foster the interface of Operational Research with computer science in general and sensor networking in particular by focusing on managing a post-disaster emergency scenario where the use of a fleet of UAVs helps rescue teams identify people needing help inside an affected area. We model this situation as an original graph theoretical problem called Multi-Depot Multi-Trip Vehicle Routing Problem with Total Completion Time minimization (MDMT-VRP-TCT). The main novelty of the MDMT-VRP-TCT is the combination of the following three features: multi-depot, multi-trip, and completion time minimization. We propose a mixed-integer linear programming (MILP) formulation, develop a matheuristic framework to address large instances, and present an extended set of experiments to test the performance of the proposed matheuristic: first, we compare the matheuristic with the MILP formulation on a set of small instances (up to 30 nodes); then, we compare our matheuristic with two heuristics from networking literature, showing that it outperforms the existing algorithms.

Management of a post-disaster emergency scenario through unmanned aerial vehicles: Multi-Depot Multi-Trip Vehicle Routing with Total Completion Time Minimization

Corò Federico;
2024

Abstract

One of the most valuable and promising applications for Unmanned aerial vehicles (UAVs) is in natural disaster management, where these aircraft can operate autonomously without any need for human intervention during their flights. In this paper, we foster the interface of Operational Research with computer science in general and sensor networking in particular by focusing on managing a post-disaster emergency scenario where the use of a fleet of UAVs helps rescue teams identify people needing help inside an affected area. We model this situation as an original graph theoretical problem called Multi-Depot Multi-Trip Vehicle Routing Problem with Total Completion Time minimization (MDMT-VRP-TCT). The main novelty of the MDMT-VRP-TCT is the combination of the following three features: multi-depot, multi-trip, and completion time minimization. We propose a mixed-integer linear programming (MILP) formulation, develop a matheuristic framework to address large instances, and present an extended set of experiments to test the performance of the proposed matheuristic: first, we compare the matheuristic with the MILP formulation on a set of small instances (up to 30 nodes); then, we compare our matheuristic with two heuristics from networking literature, showing that it outperforms the existing algorithms.
2024
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0957417424006328-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 860.86 kB
Formato Adobe PDF
860.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3537366
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact