BackgroundIn multiple sclerosis (MS), imaging biomarkers play a crucial role in characterizing the disease at the time of diagnosis. MRI and optical coherence tomography (OCT) provide readily available biomarkers that may help to define the patient's clinical profile. However, the evaluation of cortical and paramagnetic rim lesions (CL, PRL), as well as retinal atrophy, is not routinely performed in clinic.ObjectiveTo identify the most significant MRI and OCT biomarkers associated with early clinical disability in MS.MethodsBrain, spinal cord (SC) MRI, and OCT scans were acquired from 45 patients at MS diagnosis to obtain: brain PRL and non-PRL, CL, SC lesion volumes and counts, brain volumetric metrics, SC C2-C3 cross-sectional area, and retinal layer thickness. Regression models assessed relationships with physical disability (Expanded Disability Status Scale [EDSS]) and cognitive performance (Brief International Cognitive Assessment for Multiple Sclerosis [BICAMS]).ResultsIn a stepwise regression (R2 = 0.526), PRL (beta = 0.001, p = 0.023) and SC lesion volumes (beta = 0.001, p = 0.017) were the most significant predictors of EDSS, while CL volume and age were strongly associated with BICAMS scores. Moreover, in a model where PRL and non-PRL were pooled, only the contribution of SC lesion volume was retained in EDSS prediction. OCT measures did not show associations with disability at the onset.ConclusionAt MS onset, PRL and SC lesions exhibit the strongest association with physical disability, while CL strongly contribute to cognitive performance. Incorporating the evaluation of PRL and CL into the initial MS patient assessment could help define their clinical profile, thus supporting the treatment choice.
The contribution of paramagnetic rim and cortical lesions to physical and cognitive disability at multiple sclerosis clinical onset: evaluating the power of MRI and OCT biomarkers
Miscioscia, Alessandro
;Silvestri, Erica;Scialpi, Graziana;Puthenparampil, Marco;Bertoldo, Alessandra;Gallo, Paolo
2024
Abstract
BackgroundIn multiple sclerosis (MS), imaging biomarkers play a crucial role in characterizing the disease at the time of diagnosis. MRI and optical coherence tomography (OCT) provide readily available biomarkers that may help to define the patient's clinical profile. However, the evaluation of cortical and paramagnetic rim lesions (CL, PRL), as well as retinal atrophy, is not routinely performed in clinic.ObjectiveTo identify the most significant MRI and OCT biomarkers associated with early clinical disability in MS.MethodsBrain, spinal cord (SC) MRI, and OCT scans were acquired from 45 patients at MS diagnosis to obtain: brain PRL and non-PRL, CL, SC lesion volumes and counts, brain volumetric metrics, SC C2-C3 cross-sectional area, and retinal layer thickness. Regression models assessed relationships with physical disability (Expanded Disability Status Scale [EDSS]) and cognitive performance (Brief International Cognitive Assessment for Multiple Sclerosis [BICAMS]).ResultsIn a stepwise regression (R2 = 0.526), PRL (beta = 0.001, p = 0.023) and SC lesion volumes (beta = 0.001, p = 0.017) were the most significant predictors of EDSS, while CL volume and age were strongly associated with BICAMS scores. Moreover, in a model where PRL and non-PRL were pooled, only the contribution of SC lesion volume was retained in EDSS prediction. OCT measures did not show associations with disability at the onset.ConclusionAt MS onset, PRL and SC lesions exhibit the strongest association with physical disability, while CL strongly contribute to cognitive performance. Incorporating the evaluation of PRL and CL into the initial MS patient assessment could help define their clinical profile, thus supporting the treatment choice.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.