Optimizing process parameters to minimize defects remains an important challenge in injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this problem, leveraging knowledge from related tasks to enhance model training and performance. This study explores TL's viability in predicting weld line visibility in injection-molded components using artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between datasets related to different components. Furthermore, both source datasets obtained from simulations and experimental tests are used during the study. In order to use process simulations to obtain data regarding the presence of surface defects, it was necessary to correlate an output variable of the simulations with the experimental observations. The results demonstrate TL's efficacy in reducing the data required for training predictive models, with simulations proving to be a cost-effective alternative to experimental data. TL from simulations achieves comparable predictive metric values to those of the non-pre-trained network, but with an 83% reduction in the required data for the target dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and reducing manufacturing costs.

Transfer Learning-Based Artificial Neural Network for Predicting Weld Line Occurrence through Process Simulations and Molding Trials

Baruffa G.;Pieressa A.;Sorgato M.;Lucchetta G.
2024

Abstract

Optimizing process parameters to minimize defects remains an important challenge in injection molding (IM). Machine learning (ML) techniques offer promise in this regard, but their application often requires extensive datasets. Transfer learning (TL) emerges as a solution to this problem, leveraging knowledge from related tasks to enhance model training and performance. This study explores TL's viability in predicting weld line visibility in injection-molded components using artificial neural networks (ANNs). TL techniques are employed to transfer knowledge between datasets related to different components. Furthermore, both source datasets obtained from simulations and experimental tests are used during the study. In order to use process simulations to obtain data regarding the presence of surface defects, it was necessary to correlate an output variable of the simulations with the experimental observations. The results demonstrate TL's efficacy in reducing the data required for training predictive models, with simulations proving to be a cost-effective alternative to experimental data. TL from simulations achieves comparable predictive metric values to those of the non-pre-trained network, but with an 83% reduction in the required data for the target dataset. Overall, transfer learning shows promise in streamlining injection molding optimization and reducing manufacturing costs.
File in questo prodotto:
File Dimensione Formato  
jmmp-08-00098-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 6.44 MB
Formato Adobe PDF
6.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact