This study introduces a novel approach using Physics-Informed Neural Networks (PINN) to predict weld line visibility in injection-molded components based on process parameters. Leveraging PINNs, the research aims to minimize experimental tests and numerical simulations, thus reducing computational efforts, to make the classification models for surface defects more easily implementable in an industrial environment. By correlating weld line visibility with the Frozen Layer Ratio (FLR) threshold, identified through limited experimental data and simulations, the study generates synthetic datasets for pre-training neural networks. This study demonstrates that a quality classification model pre-trained with PINN-generated datasets achieves comparable performance to a randomly initialized network in terms of Recall and Area Under the Curve (AUC) metrics, with a substantial reduction of 78% in the need for experimental points. Furthermore, it achieves similar accuracy levels with 74% fewer experimental points. The results demonstrate the robustness and accuracy of neural networks pre-trained with PINNs in predicting weld line visibility, offering a promising approach to minimizing experimental efforts and computational resources.

Enhancing weld line visibility prediction in injection molding using physics-informed neural networks

Pieressa A.;Baruffa G.;Sorgato M.;Lucchetta G.
2024

Abstract

This study introduces a novel approach using Physics-Informed Neural Networks (PINN) to predict weld line visibility in injection-molded components based on process parameters. Leveraging PINNs, the research aims to minimize experimental tests and numerical simulations, thus reducing computational efforts, to make the classification models for surface defects more easily implementable in an industrial environment. By correlating weld line visibility with the Frozen Layer Ratio (FLR) threshold, identified through limited experimental data and simulations, the study generates synthetic datasets for pre-training neural networks. This study demonstrates that a quality classification model pre-trained with PINN-generated datasets achieves comparable performance to a randomly initialized network in terms of Recall and Area Under the Curve (AUC) metrics, with a substantial reduction of 78% in the need for experimental points. Furthermore, it achieves similar accuracy levels with 74% fewer experimental points. The results demonstrate the robustness and accuracy of neural networks pre-trained with PINNs in predicting weld line visibility, offering a promising approach to minimizing experimental efforts and computational resources.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--478892081.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact