Given α∈(0,1] and p∈[1,+∞], we define the space DMα,p(Rn) of Lp vector fields whose α-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the α-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss–Green formula. The sharpness of our results is discussed via some explicit examples.

Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula

Stefani G.
2024

Abstract

Given α∈(0,1] and p∈[1,+∞], we define the space DMα,p(Rn) of Lp vector fields whose α-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the α-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss–Green formula. The sharpness of our results is discussed via some explicit examples.
File in questo prodotto:
File Dimensione Formato  
Comi, Stefani - Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 512.41 kB
Formato Adobe PDF
512.41 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact