Given α∈(0,1] and p∈[1,+∞], we define the space DMα,p(Rn) of Lp vector fields whose α-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the α-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss–Green formula. The sharpness of our results is discussed via some explicit examples.
Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula
Stefani G.
2024
Abstract
Given α∈(0,1] and p∈[1,+∞], we define the space DMα,p(Rn) of Lp vector fields whose α-divergence is a finite Radon measure, extending the theory of divergence-measure vector fields to the distributional fractional setting. Our main results concern the absolute continuity properties of the α-divergence-measure with respect to the Hausdorff measure and fractional analogues of the Leibniz rule and the Gauss–Green formula. The sharpness of our results is discussed via some explicit examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Comi, Stefani - Fractional divergence-measure fields, Leibniz rule and Gauss–Green formula.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
512.41 kB
Formato
Adobe PDF
|
512.41 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.