In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to Lloc1([0,+∞);Lexp(Rd;Rd×d)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray–Hopf weak solutions of the Navier–Stokes equations.

Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces

Stefani G.
2023

Abstract

In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to Lloc1([0,+∞);Lexp(Rd;Rd×d)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray–Hopf weak solutions of the Navier–Stokes equations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact