In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to Lloc1([0,+∞);Lexp(Rd;Rd×d)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray–Hopf weak solutions of the Navier–Stokes equations.
Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces
Stefani G.
2023
Abstract
In the class of admissible weak solutions, we prove a weak-strong uniqueness result for the incompressible Euler equations assuming that the symmetric part of the gradient belongs to Lloc1([0,+∞);Lexp(Rd;Rd×d)), where Lexp denotes the Orlicz space of exponentially integrable functions. Moreover, under the same assumptions on the limit solution to the Euler system, we obtain the convergence of vanishing-viscosity Leray–Hopf weak solutions of the Navier–Stokes equations.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
De Rosa, Inversi, Stefani - Weak-strong uniqueness and vanishing viscosity for incompressible Euler equations in exponential spaces.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
399.5 kB
Formato
Adobe PDF
|
399.5 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
2204.12779v2.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Creative commons
Dimensione
323.5 kB
Formato
Adobe PDF
|
323.5 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




