We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.
Leibniz rules and Gauss–Green formulas in distributional fractional spaces
Stefani G.
2022
Abstract
We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Comi, Stefani - Leibniz rules and Gauss-Green formulas in distributional fractional spaces.pdf
Accesso riservato
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
749.28 kB
Formato
Adobe PDF
|
749.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2111.13942v4.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Altro
Dimensione
521.24 kB
Formato
Adobe PDF
|
521.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.