We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.

Leibniz rules and Gauss–Green formulas in distributional fractional spaces

Stefani G.
2022

Abstract

We apply the results established in [12] to prove some new fractional Leibniz rules involving BVα,p and Sα,p functions, following the distributional approach adopted in the previous works [8,13,14]. In order to achieve our main results, we revise the elementary properties of the fractional operators involved in the framework of Besov spaces and we rephraze the Kenig–Ponce–Vega Leibniz-type rule in our fractional context. We apply our results to prove the well-posedness of the boundary-value problem for a general 2α-order fractional elliptic operator in divergence form.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact