Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.

Unisolvence of random Kansa collocation by Thin-Plate Splines for the Poisson equation

Sommariva A.;Vianello M.
Investigation
2024

Abstract

Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.
File in questo prodotto:
File Dimensione Formato  
Kansa.pdf

accesso aperto

Tipologia: Accepted (AAM - Author's Accepted Manuscript)
Licenza: Creative commons
Dimensione 263.66 kB
Formato Adobe PDF
263.66 kB Adobe PDF Visualizza/Apri
1-s2.0-S0955799724002480-main.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 537.61 kB
Formato Adobe PDF
537.61 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3535865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact