Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.
Unisolvence of random Kansa collocation by Thin-Plate Splines for the Poisson equation
Sommariva A.;Vianello M.Investigation
2024
Abstract
Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Kansa.pdf
accesso aperto
Tipologia:
Accepted (AAM - Author's Accepted Manuscript)
Licenza:
Creative commons
Dimensione
263.66 kB
Formato
Adobe PDF
|
263.66 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0955799724002480-main.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
537.61 kB
Formato
Adobe PDF
|
537.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.