In this paper we consider two functions related to the arithmetic and geometric means of element orders of a finite group, showing that certain lower bounds on such functions strongly affect the group structure. In particular, for every prime p, we prove a sufficient condition for a finite group to be p-nilpotent, that is, a group whose elements of (Formula presented.) -order form a normal subgroup. Moreover, we characterize finite cyclic groups with prescribed number of prime divisors.

On the structure of finite groups determined by the arithmetic and geometric means of element orders

Grazian V.;
2024

Abstract

In this paper we consider two functions related to the arithmetic and geometric means of element orders of a finite group, showing that certain lower bounds on such functions strongly affect the group structure. In particular, for every prime p, we prove a sufficient condition for a finite group to be p-nilpotent, that is, a group whose elements of (Formula presented.) -order form a normal subgroup. Moreover, we characterize finite cyclic groups with prescribed number of prime divisors.
File in questo prodotto:
File Dimensione Formato  
9. arithmetic and geometric means of element orders.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri   Richiedi una copia
2212.13770v2.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 159.75 kB
Formato Adobe PDF
159.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3535706
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact