In this paper, we prove the existence of periodic tessellations of R-N minimizing a general nonlocal perimeter functional, defined as the interaction between a set and its complement through a nonnegative kernel, which we assume to be either integrable at the origin, or singular, with a fractional type singularity. We reformulate the optimal partition problem as an isoperimetric problem among fundamental domains associated with discrete subgroups of R-N, and we provide the existence of a solution by using suitable concentrated compactness type arguments and compactness results for lattices. Finally, we discuss the possible optimality of the hexagonal tessellation in the planar case.

Lattice tilings minimizing nonlocal perimeters

Cesaroni A.;
2024

Abstract

In this paper, we prove the existence of periodic tessellations of R-N minimizing a general nonlocal perimeter functional, defined as the interaction between a set and its complement through a nonnegative kernel, which we assume to be either integrable at the origin, or singular, with a fractional type singularity. We reformulate the optimal partition problem as an isoperimetric problem among fundamental domains associated with discrete subgroups of R-N, and we provide the existence of a solution by using suitable concentrated compactness type arguments and compactness results for lattices. Finally, we discuss the possible optimality of the hexagonal tessellation in the planar case.
File in questo prodotto:
File Dimensione Formato  
cnfAAM.pdf

embargo fino al 16/10/2025

Descrizione: Author Accepted Manuscript
Tipologia: Accepted (AAM - Author's Accepted Manuscript)
Licenza: Creative commons
Dimensione 469.46 kB
Formato Adobe PDF
469.46 kB Adobe PDF Visualizza/Apri   Richiedi una copia
cesaroni-et-al-2024-lattice-tilings-minimizing-nonlocal-perimeters.pdf

Accesso riservato

Descrizione: VoR
Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 419.47 kB
Formato Adobe PDF
419.47 kB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3535705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact