In our continuing search for new polymer composites with antimicrobial activity, we observed that even unmodified epoxy resins exhibit significant activity. Considering their widespread use as starting materials for the realization of multifunctional nanocomposites with excellent chemical and mechanical properties, it was deemed relevant to uncover these unexpected properties that can lead to novel applications. In fact, in places where the contact with human activities makes working surfaces susceptible to microbial contamination, thus jeopardizing the sterility of the environment, their biological activity opens the way to their successful application in minimizing healthcare-associated infections. To this end, three commercial and widely used epoxy resins (DGEBA/Elan-TechW 152LR, 1; EPIKOTETM Resin MGS®/EPIKURETM RIM H 235, 2 and MC152/EW101, 3) have been investigated to determine their antibacterial and antiviral activity. After 24 h, according to ISO 22196:2011, resins 1 and 2 showed a high antibacterial efficacy (R value > 6.0 log reduction) against Staphylococcus aureus and Escherichia coli. Resin 2, prepared according to the ratio epoxy/hardener indicated by the supplier (sample 2a) and with 10% w/w hardener excess (sample 2b), exhibited an intriguing virucidal activity against Herpes Simplex Virus type-1 and Human Coronavirus type V-OC43 as a surrogate of SARS-CoV-2.

Revealing Commercial Epoxy Resins’ Antimicrobial Activity: A Combined Chemical–Physical, Mechanical, and Biological Study

Rigo, Mario
Investigation
;
Quaresimin, Marino
Conceptualization
;
Zappalorto, Michele
Conceptualization
;
Pontefisso, Alessandro
Investigation
;
Pastrello, Matteo
Investigation
;
Rossetto, Daniele
Investigation
;
Modesti, Michele
Conceptualization
;
Sgarbossa, Paolo
Investigation
;
Bertani, Roberta
Conceptualization
2024

Abstract

In our continuing search for new polymer composites with antimicrobial activity, we observed that even unmodified epoxy resins exhibit significant activity. Considering their widespread use as starting materials for the realization of multifunctional nanocomposites with excellent chemical and mechanical properties, it was deemed relevant to uncover these unexpected properties that can lead to novel applications. In fact, in places where the contact with human activities makes working surfaces susceptible to microbial contamination, thus jeopardizing the sterility of the environment, their biological activity opens the way to their successful application in minimizing healthcare-associated infections. To this end, three commercial and widely used epoxy resins (DGEBA/Elan-TechW 152LR, 1; EPIKOTETM Resin MGS®/EPIKURETM RIM H 235, 2 and MC152/EW101, 3) have been investigated to determine their antibacterial and antiviral activity. After 24 h, according to ISO 22196:2011, resins 1 and 2 showed a high antibacterial efficacy (R value > 6.0 log reduction) against Staphylococcus aureus and Escherichia coli. Resin 2, prepared according to the ratio epoxy/hardener indicated by the supplier (sample 2a) and with 10% w/w hardener excess (sample 2b), exhibited an intriguing virucidal activity against Herpes Simplex Virus type-1 and Human Coronavirus type V-OC43 as a surrogate of SARS-CoV-2.
2024
File in questo prodotto:
File Dimensione Formato  
polymers-16-02571.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.35 MB
Formato Adobe PDF
5.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3534101
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact