We consider the problem of robust fitting for statistical models applied to multivariate torus data, e.g., data which are multivariate angles. We discuss two different definitions of outliers, “geometric” and “probabilistic” outliers, and the proposed robust methods to cope with them. We mainly focus on multivariate wrapped models together with some computational aspects.

Robust Issues in Estimating Models for Multivariate Torus Data

Giovanni Saraceno;
2021

Abstract

We consider the problem of robust fitting for statistical models applied to multivariate torus data, e.g., data which are multivariate angles. We discuss two different definitions of outliers, “geometric” and “probabilistic” outliers, and the proposed robust methods to cope with them. We mainly focus on multivariate wrapped models together with some computational aspects.
2021
CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS
13th Scientific Meeting of the Classification and Data Analysis Group
978-88-5518-340-6
File in questo prodotto:
File Dimensione Formato  
cladag2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 139.72 kB
Formato Adobe PDF
139.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3533881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact