We investigate the equilibrium strategies for customers arriving at overtaking-free queueing networks and receiving partial information about the system’s state. In an overtaking-free network, customers cannot be overtaken by others arriving after them. We assume that customer arrivals follow a Poisson process and that service times at any queue are independent and exponentially distributed. Upon arrival, the received partial information is the total number of customers already in the network; however, the distribution of these among the queues is left unknown. Adding rewards for being served and costs for waiting, we analyze the economic behavior of this system, looking for equilibrium threshold strategies. The overtaking-free characteristic allows for coupling of its dynamics with those of corresponding closed Jackson networks, for which an algorithm to compute the expected sojourn times is known. We exploit this feature to compute the profit function and prove the existence of equilibrium threshold strategies. We also illustrate the results by analyzing and comparing two simple network structures.

Equilibrium Strategies for Overtaking-Free Queueing Networks under Partial Information

Barbato, David;D'Auria, Bernardo
2024

Abstract

We investigate the equilibrium strategies for customers arriving at overtaking-free queueing networks and receiving partial information about the system’s state. In an overtaking-free network, customers cannot be overtaken by others arriving after them. We assume that customer arrivals follow a Poisson process and that service times at any queue are independent and exponentially distributed. Upon arrival, the received partial information is the total number of customers already in the network; however, the distribution of these among the queues is left unknown. Adding rewards for being served and costs for waiting, we analyze the economic behavior of this system, looking for equilibrium threshold strategies. The overtaking-free characteristic allows for coupling of its dynamics with those of corresponding closed Jackson networks, for which an algorithm to compute the expected sojourn times is known. We exploit this feature to compute the profit function and prove the existence of equilibrium threshold strategies. We also illustrate the results by analyzing and comparing two simple network structures.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3533165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact