Advanced ceramics printed with photon-based additive manufacturing deals with anisotropic mechanical properties from the layer-by-layer manufacturing. Motivated by the success in using highly filled transparent slurries containing nanoparticles for powder-based two-photon-polymerization (2PP) for advanced ceramic printing, this works approach is the transfer to Xolography, a volumetric additive manufacturing technology based on linear two-photon excitation and without recoating steps. This paper reports the results of a preliminary investigation optimizing the photocurable slurry to the requirements of Xolography in terms of transparency, over a significantly larger mean free path, compared to 2PP. A feedstock filled with 70 % weight fraction of ceramic particles (similar to 30 vol%) exhibiting an exceptionally high degree of transparency in the relevant wavelength range of 400-800 nm was prepared from 5 nm zirconia nanoparticles. The high transparency of the photocurable slurry is attributed to the near-monomodal particle size distribution of the zirconia nanoparticles used.

Linear volumetric additive manufacturing of zirconia from a transparent photopolymerizable ceramic slurry via Xolography

De Marzi, A.;Franchin, G.;Colombo, P.;
2024

Abstract

Advanced ceramics printed with photon-based additive manufacturing deals with anisotropic mechanical properties from the layer-by-layer manufacturing. Motivated by the success in using highly filled transparent slurries containing nanoparticles for powder-based two-photon-polymerization (2PP) for advanced ceramic printing, this works approach is the transfer to Xolography, a volumetric additive manufacturing technology based on linear two-photon excitation and without recoating steps. This paper reports the results of a preliminary investigation optimizing the photocurable slurry to the requirements of Xolography in terms of transparency, over a significantly larger mean free path, compared to 2PP. A feedstock filled with 70 % weight fraction of ceramic particles (similar to 30 vol%) exhibiting an exceptionally high degree of transparency in the relevant wavelength range of 400-800 nm was prepared from 5 nm zirconia nanoparticles. The high transparency of the photocurable slurry is attributed to the near-monomodal particle size distribution of the zirconia nanoparticles used.
2024
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2666539524001196-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3531721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact