AbstractAlthough the construction of concrete piles has a relevant environmental footprint, they are commonly used to reduce settlements of embankments on soft soil strata. A more sustainable choice to further reduce settlements (and, consequently, the number of piles) is to place geosynthetics below the embankment. However, existing design methods cannot calculate settlements at the embankment top and cannot be used to optimise the number of piles in a displacement-based design. In this note, an innovative model for assessing settlements at the top of Geosynthetic-Reinforced and Pile-Supported embankments induced by the embankment construction process is presented and validated against finite difference numerical analyses. The model is used to optimise the design of both piles and geosynthetic, and applied to a practical example, where the mass of CO2saved by designing geosynthetics to reduce the pile number.Graphical Abstract

Displacement-Based Design of Geosynthetic-Reinforced Pile-Supported Embankments to Increase Sustainability

Viviana Mangraviti
2022

Abstract

AbstractAlthough the construction of concrete piles has a relevant environmental footprint, they are commonly used to reduce settlements of embankments on soft soil strata. A more sustainable choice to further reduce settlements (and, consequently, the number of piles) is to place geosynthetics below the embankment. However, existing design methods cannot calculate settlements at the embankment top and cannot be used to optimise the number of piles in a displacement-based design. In this note, an innovative model for assessing settlements at the top of Geosynthetic-Reinforced and Pile-Supported embankments induced by the embankment construction process is presented and validated against finite difference numerical analyses. The model is used to optimise the design of both piles and geosynthetic, and applied to a practical example, where the mass of CO2saved by designing geosynthetics to reduce the pile number.Graphical Abstract
2022
Civil and Environmental Engineering for the Sustainable Development Goals
9783030995928
9783030995935
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-531515953.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 745.86 kB
Formato Adobe PDF
745.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3530453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact