Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H2-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant's safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H2 environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handli...
Machine learning-aided risk-based inspection strategy for hydrogen technologies
Vianello C.;
2024
Abstract
Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H2-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant's safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H2 environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handli...File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S095758202401156X-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
3.29 MB
Formato
Adobe PDF
|
3.29 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.