Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H2-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant's safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H2 environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handli...

Machine learning-aided risk-based inspection strategy for hydrogen technologies

Vianello C.;
2024

Abstract

Although technically challenging, effective, safe, and economical transport is crucial for enabling a widespread rollout of hydrogen technologies. A promising option to transport large amounts of hydrogen lies in employing retrofitted natural gas pipelines. Nevertheless, H2-rich environments tend to degrade pipeline steels, reducing their load-bearing capability and accelerating crack propagation. Regular inspection and maintenance activities can preserve the pipelines’ integrity and guarantee safe operations. The risk-based inspection (RBI) approach is based on estimating the risk for each component item. It focuses most inspection activities on high-risk components to reduce costs while maximizing the plant's safety and availability. However, the RBI standards do not consider hydrogen-induced degradations and cannot be adopted for industrial equipment operating in H2 environments. This study proposes a novel ad-hoc methodology for the risk-based inspection planning of hydrogen handli...
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S095758202401156X-main.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.29 MB
Formato Adobe PDF
3.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3529901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact