In this paper, we study the Maximum Vertex-weighted b-Matching (MVbM) problem on bipartite graphs in a new game-theoretical environment. In contrast to other game-theoretical settings, we consider the case in which the value of the tasks is public and common to every agent so that the private information of every agent consists of edges connecting them to the set of tasks. In this framework, we study three mechanisms. Two of these mechanisms, namely MBFS and MDFS, are optimal but not truthful, while the third one, MAP, is truthful but sub-optimal. Albeit these mechanisms are induced by known algorithms, we show MBFS and MDFS are the best possible mechanisms in terms of Price of Anarchy and Price of Stability, while MAP is the best truthful mechanism in terms of approximated ratio. Furthermore, we characterize the Nash Equilibria of MBFS and MDFS and retrieve sets of conditions under which MBFS acts as a truthful mechanism, which highlights the differences between MBFS and MDFS. Finally...

On the Manipulability of Maximum Vertex-Weighted Bipartite b-Matching Mechanisms

Gennaro Auricchio;
2023

Abstract

In this paper, we study the Maximum Vertex-weighted b-Matching (MVbM) problem on bipartite graphs in a new game-theoretical environment. In contrast to other game-theoretical settings, we consider the case in which the value of the tasks is public and common to every agent so that the private information of every agent consists of edges connecting them to the set of tasks. In this framework, we study three mechanisms. Two of these mechanisms, namely MBFS and MDFS, are optimal but not truthful, while the third one, MAP, is truthful but sub-optimal. Albeit these mechanisms are induced by known algorithms, we show MBFS and MDFS are the best possible mechanisms in terms of Price of Anarchy and Price of Stability, while MAP is the best truthful mechanism in terms of approximated ratio. Furthermore, we characterize the Nash Equilibria of MBFS and MDFS and retrieve sets of conditions under which MBFS acts as a truthful mechanism, which highlights the differences between MBFS and MDFS. Finally...
2023
Frontiers in Artificial Intelligence and Applications
26th European Conference on Artificial Intelligence, ECAI 2023
9781643684369
File in questo prodotto:
File Dimensione Formato  
FAIA-372-FAIA230262.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 347.32 kB
Formato Adobe PDF
347.32 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3528385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact