In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.
An integer linear programming model for tilings
Auricchio Gennaro;
2023
Abstract
In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Journal_of_Mathematics_and_the_Arts.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
409.92 kB
Formato
Adobe PDF
|
409.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2107.04108v2.pdf
accesso aperto
Tipologia:
Preprint (AM - Author's Manuscript - submitted)
Licenza:
Altro
Dimensione
430.02 kB
Formato
Adobe PDF
|
430.02 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.