In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.

An integer linear programming model for tilings

Auricchio Gennaro;
2023

Abstract

In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3528342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact