In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.

An integer linear programming model for tilings

Auricchio Gennaro;
2023

Abstract

In this paper, we propose an integer linear programming model whose solutions are the aperiodic rhythms tiling with a given rhythm A. We show how it can be used to define an iterative algorithm that, given a period n, finds all the rhythms which tile with a given rhythm A and also to efficiently check the necessity of the Coven-Meyerowitz condition (T2). To conclude, we run several experiments to validate the time efficiency of the model.
File in questo prodotto:
File Dimensione Formato  
Journal_of_Mathematics_and_the_Arts.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 409.92 kB
Formato Adobe PDF
409.92 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2107.04108v2.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 430.02 kB
Formato Adobe PDF
430.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3528342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact