We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.
Age of information for remote sensing with uncoordinated finite-horizon access
Badia L.;
2024
Abstract
We analyze a remote sensing system in the Internet of things, where uncoordinated nodes send status updates to a common receiver to achieve information freshness, quantified through age of information. We consider a finite horizon scheduling over a random multiple access channel, where colliding messages are lost. We show that nodes must adopt a further randomization to deviate from identical schedules and escape collision deadlocks. Moreover, we discuss the impact of feedback availability if, due to, e.g., energy expenditure, it decreases the number of transmission opportunities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2405959524000250-main.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
721.74 kB
Formato
Adobe PDF
|
721.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.