Semiconductor nanocrystals (‘‘quantum dots’’) are light emitters with high quantum yield that are relatively easy to manufacture. There is therefore much interest in their possible application for the development of high-performance scintillators for use in high-energy physics. However, few previous studies have focused on the response of these materials to high-energy particles. To evaluate the potential for the use of nanocomposite scintillators in calorimetry, we are performing side-by-side tests of fine-sampling shashlyk calorimeter prototypes with both conventional and nanocomposite scintillators using electron and minimum-ionizing particle beams, allowing direct comparison of the performance obtained.

Development of nanocomposite scintillators for use in high-energy physics

Sgarbossa, F.;
2024

Abstract

Semiconductor nanocrystals (‘‘quantum dots’’) are light emitters with high quantum yield that are relatively easy to manufacture. There is therefore much interest in their possible application for the development of high-performance scintillators for use in high-energy physics. However, few previous studies have focused on the response of these materials to high-energy particles. To evaluate the potential for the use of nanocomposite scintillators in calorimetry, we are performing side-by-side tests of fine-sampling shashlyk calorimeter prototypes with both conventional and nanocomposite scintillators using electron and minimum-ionizing particle beams, allowing direct comparison of the performance obtained.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3526689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact