We prove Goh conditions of order n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqq 3$$\end{document} for strictly singular length-minimizing curves of corank 1, under the assumption that the domain of the nth instrinsic differential is of finite codimension. This result relies upon the proof of an open mapping theorem for maps with a regular nth differential.

Higher Order Goh Conditions for Singular Extremals of Corank 1

Monti R.
;
Socionovo A.
2024

Abstract

We prove Goh conditions of order n >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqq 3$$\end{document} for strictly singular length-minimizing curves of corank 1, under the assumption that the domain of the nth instrinsic differential is of finite codimension. This result relies upon the proof of an open mapping theorem for maps with a regular nth differential.
File in questo prodotto:
File Dimensione Formato  
BMS_2023_08_01_FINAL-black.pdf

Accesso riservato

Tipologia: Published (Publisher's Version of Record)
Licenza: Accesso privato - non pubblico
Dimensione 462.56 kB
Formato Adobe PDF
462.56 kB Adobe PDF Visualizza/Apri   Richiedi una copia
2202.00300v3.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Altro
Dimensione 833.06 kB
Formato Adobe PDF
833.06 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3526321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact