In this paper we propose a data-driven approach to the design of reduced-order unknown-input observers (rUIOs). We first recall the model-based solution, by assuming a problem set-up slightly different from those traditionally adopted in the literature, in order to be able to easily adapt it to the data-driven scenario. Necessary and sufficient conditions for the existence of a reduced-order unknown-input observer, whose matrices can be derived from a sufficiently rich set of collected historical data, are first derived and then proved to be equivalent to the ones obtained in the model-based framework. Finally, a numerical example is presented, to validate the effectiveness of the proposed scheme.

Data-driven reduced-order unknown-input observers

Valcher, Maria Elena
2024

Abstract

In this paper we propose a data-driven approach to the design of reduced-order unknown-input observers (rUIOs). We first recall the model-based solution, by assuming a problem set-up slightly different from those traditionally adopted in the literature, in order to be able to easily adapt it to the data-driven scenario. Necessary and sufficient conditions for the existence of a reduced-order unknown-input observer, whose matrices can be derived from a sufficiently rich set of collected historical data, are first derived and then proved to be equivalent to the ones obtained in the model-based framework. Finally, a numerical example is presented, to validate the effectiveness of the proposed scheme.
2024
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0947358024000943-main.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 585.08 kB
Formato Adobe PDF
585.08 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3524262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 0
social impact