The field of Quantum Computing (QC) has gained significant popularity in recent years, due to its potential to provide benefits in terms of efficiency and effectiveness when employed to solve certain computationally intensive tasks. In both Information Retrieval (IR) and Recommender Systems (RS) we are required to build methods that apply complex processing on large and heterogeneous datasets, it is natural therefore to wonder whether QC could also be applied to boost their performance. The tutorial aims to provide first an introduction to QC for an audience that is not familiar with the technology, then to show how to apply the QC paradigm of Quantum Annealing (QA) to solve practical problems that are currently faced by IR and RS systems. During the tutorial, participants will be provided with the fundamentals required to understand QC and to apply it in practice by using a real D-Wave quantum annealer through APIs.

Using and Evaluating Quantum Computing for Information Retrieval and Recommender Systems

Pasin A.;Ferro N.
2024

Abstract

The field of Quantum Computing (QC) has gained significant popularity in recent years, due to its potential to provide benefits in terms of efficiency and effectiveness when employed to solve certain computationally intensive tasks. In both Information Retrieval (IR) and Recommender Systems (RS) we are required to build methods that apply complex processing on large and heterogeneous datasets, it is natural therefore to wonder whether QC could also be applied to boost their performance. The tutorial aims to provide first an introduction to QC for an audience that is not familiar with the technology, then to show how to apply the QC paradigm of Quantum Annealing (QA) to solve practical problems that are currently faced by IR and RS systems. During the tutorial, participants will be provided with the fundamentals required to understand QC and to apply it in practice by using a real D-Wave quantum annealer through APIs.
2024
SIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3524138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex 3
social impact