Photosynthetic hydrogen generation by cobalt(II) tris(2-pyridylmethyl)amine (TPMA) complexes is mainly limited by protonation kinetics and decomposition routes involving demetallation. In the present work we have explored the effects of both proton shuttles and improved rigidity on the catalytic ability of cobalt(II) TPMA complexes. Remarkably, we demonstrate that, while a small enhancement in the catalytic performance is attained in a rigid cage structure, the introduction of ammonium groups as proton transfer relays in close proximity to the cobalt center allows to reach a 4-fold increase in the quantum efficiency of H2 formation, and a surprising 22-fold gain in the maximum turnover number, at low catalyst concentration. The beneficial role of the ammonium relays in promoting faster intramolecular proton transfer to the reduced cobalt center is documented by transient absorption spectroscopy, showcasing the great relevance of tuning the catalyst periphery to achieve efficient cataly...

Strong Enhancement in Cobalt(II)-TPMA Aqueous Hydrogen Photosynthesis through Intramolecular Proton Relay

Begato, Federico;Raulin, Melvin;Licini, Giulia;Zonta, Cristiano
2024

Abstract

Photosynthetic hydrogen generation by cobalt(II) tris(2-pyridylmethyl)amine (TPMA) complexes is mainly limited by protonation kinetics and decomposition routes involving demetallation. In the present work we have explored the effects of both proton shuttles and improved rigidity on the catalytic ability of cobalt(II) TPMA complexes. Remarkably, we demonstrate that, while a small enhancement in the catalytic performance is attained in a rigid cage structure, the introduction of ammonium groups as proton transfer relays in close proximity to the cobalt center allows to reach a 4-fold increase in the quantum efficiency of H2 formation, and a surprising 22-fold gain in the maximum turnover number, at low catalyst concentration. The beneficial role of the ammonium relays in promoting faster intramolecular proton transfer to the reduced cobalt center is documented by transient absorption spectroscopy, showcasing the great relevance of tuning the catalyst periphery to achieve efficient cataly...
File in questo prodotto:
File Dimensione Formato  
Angewandte Chemie - 2024 - Droghetti - Strong Enhancement in Cobalt II ‐TPMA Aqueous Hydrogen Photosynthesis through.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3524081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex 0
social impact